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a b s t r a c t

A method for performing modal analysis of undamped active flexible multibody systems with collocated
sensors and actuators in a finite element environment was recently developed by the authors. In this
paper, the theory is further expanded to include systems with non-collocated sensors and actuators,
damping and steady-state error elimination. The closed-loop eigenvalue problem for active flexible
multibody systems with multiple-input multiple-output proportional-integral-derivative (PID) feedback
type controllers and multiple degrees of freedom finite element models is solved.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Modal analysis and dynamic simulation of active flexible multi-
body systems – from now on referred to as active mechanisms –

are a multidisciplinary challenge. The dynamic performance
of such products is strongly dependent on an optimal interaction
between the controllers and the mechanical components. An
important tool in the optimization of such products is modal
analysis, which predicts modal parameters, i.e. natural frequencies,
mode shapes and damping ratios, for the active system. Due to
the complexity of the mechanical components, both in form
and function, it may be practical to handle such systems through
a finite element (FE) approach. Effective time domain dynamic
simulations of multibody systems in an FE environment have
been described by for instance Géradin and Cardona [1] and
Sivertsen [2].

The authors have recently developed a method for performing
modal analyses of active mechanisms in an FE environment [3]. In
that work, the equations for the control system are expressed in
second-order form, rather than in first-order or state-space form,
which is typical practice in control system disciplines, see for
instance [4–6]. One of the advantages of this approach is an
increased compatibility with the mechanical equations, which
are typically expressed in second-order form, e.g., [2,7–10],
since equations determined in state-space form are difficult to
transform into second-order structural dynamics equations [11].

For undamped systems with only collocated sensors and actuators,
expressing the system equations in second-order form means that
traditional symmetric FE eigensolver methods, such as the very
popular Lanczos algorithm [12], may be used.

In [3], the theory for performing modal analyses of active
mechanisms was only derived for the undamped case without
steady-state error elimination, i.e. no damping or position feed-
back integral gain. Damping can occur due to both the mechanical
system and controllers, e.g., [3,8,13–17], while position feed-
back integral gain can cause the system to become unstable [3].
As explained in for instance [8], damping and system instability
are basically determined by the same factor: the constant in the
exponent of the oscillation amplitude envelope; a negative con-
stant yields a decaying oscillation, i.e. damping, whereas a positive
constant yields a growing oscillation, and thus instability. The
eigenfrequencies of such systems are not the same as for a stable
undamped system, e.g., [7,8]. In addition to altering the eigenfre-
quencies, damping also causes the eigenvectors to become com-
plex [18].

As stated in [19], the solution procedures of non-proportionally
damped systems mainly follow two routes: the state-space
method and approximate methods in “n-space”. Most of the
n-space methods either seek an optimal decoupling of the equa-
tions of motion or simply neglect the off-diagonal terms of the
modal damping matrix. Following such methodologies will still
yield only real mode shapes. The accuracy of these methods, other
than the light damping assumption, depends upon various factors
such as frequency separation between modes, driving frequency,
etc. [19]. In order to solve the damped eigenvalue problem for
a system with n degrees of freedom (DOFs), the second-order
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differential equations can be reformulated as a first-order 2n-
dimensional matrix equation system, as shown for instance in
[20]. The state-space method is exact in nature but requires
significant numerical effort for obtaining the eigensolutions, as
the size of the problem doubles from n to 2n.

How to solve the eigenvalue problem for a closed-loop system
on state-space form has been shown by e.g., Rastgaar et al. [21].
However, their theory is only valid for systems containing con-
troller gains proportional to position and velocity, i.e. equivalent
to stiffness and damping, respectively. As stated by Astrom and
Hagglund [22,23], PID controllers are the most common type of
controllers in use today, and as shown by the authors in [3],
depending on the type of sensor inputs, PID controllers can
contain gains proportional to position, velocity, acceleration or
the time integral of position (absement), i.e. equivalent to stiffness,
damping, mass and steady-state error elimination, respectively.
Thus, modal analysis methods for active mechanisms should also
take into consideration the effects caused by the various types of
PID controllers.

Purely mechanical systems have symmetric system matrices. In
FE software systems, this property is widely exploited in effective
eigensolver methods for undamped systems. For a system contain-
ing only collocated sensors and actuators, the system matrix
symmetry is retained, meaning that the ordinary symmetric eigen-
solver methods can still be used. However, if the system contains
one or more sensors which are not collocated with their corre-
sponding actuators, the system matrices will be unsymmetrical,
meaning that the traditional symmetric eigensolver methods
cannot be used.

This paper addresses the theory for solving the eigenvalue
problem for active mechanisms that contain both damping and
steady-state error elimination and controllers with non-collocated
sensors and actuators. The proposed method is to express the
system matrices in second-order form, and then transform the
system matrices into a first-order 2n- or 3n-dimensional matrix
equation system for modal analysis execution. Expressing the
system matrices in second-order form increases the compatibility
of the proposed method with FE software systems. If the effect

from damping, steady-state error elimination and non-collocation
between sensors and actuators on the eigenfrequencies can be
neglected, the system matrices can be kept in second-order form,
and traditional FE eigensolver methods can be utilized as shown in
[3]. If these effects cannot be neglected, or for instance very
precise predictions of the eigenfrequencies are vital, transforming
the system matrices into a 2n or 3n-space provides a way of
extracting the more correct eigenfrequencies, however, this comes
at the cost of an increase in solving time. It should be noted that
the transformation of the system matrices into a 2n or 3n-space
does not necessarily mean an impractical or unsolvable equation
system with respect to number of system DOFs. An example given
by the authors in [3] is the satellite tracking antenna depicted
in Fig. 1.

Due to model reduction techniques [2], the virtual model of the
mechanism was reduced from approximately 950,000 DOFs to
about 850 DOFs for effective time domain dynamic simulations.

The objective of this work is to help engineers working in an FE
environment to be able to accurately predict eigenfrequencies and
mode shapes of active mechanisms containing any type of PID
controllers, with the exception being controllers containing accel-
eration feedback derivative gains. The controllers can be of type
single-input single-output (SISO) or multiple-input multiple-out-
put (MIMO), and the sensors and actuators for the controllers can
be either collocated or non-collocated. The theory derived in this
work is tested through numerical examples, which are deliberately
made very simple because of verifiability. The derived theory is
intended to be implemented in an FE software system, but for the
sake of validation, all eigenvalue problems in this work are solved
in MATLAB1 using the eig() routine [24]. All time domain
simulations are performed in FEDEM2.

Fig. 1. Satellite tracking antenna.

1 MATLAB by The MathWorks, Inc., version R2013b.
2 FEDEM (Finite Element in Dynamics of Elastic Mechanisms) simulation

software is a multibody dynamics package distributed by Fedem Technology AS.
It is based on the finite element method and uses model reduction techniques to
effectively perform nonlinear time domain dynamic simulations of active flexible
multibody systems [2,25], version R5.0.
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2. Theory

The equation of motion for a single degree of freedom (SDOF)
mechanical system with a single-input single-output (SISO) feed-
back controller can be written as follows [3]:

m €rðtÞþc _rðtÞþk rðtÞ ¼ FAppðtÞþFCtrlðtÞ ð1Þ

wherem is the mass, c is the damping and k is the stiffness. r is the
displacement of the mass m with respect to time; _r and €r are the
first and second time derivatives of r, respectively, i.e. velocity and
acceleration of the mass m. FApp is the applied mechanical force
and FCtrl is the force from the controller. This is in accordance with
equations found in for instance [26].

Fig. 2 shows a simple block diagram used for describing a SISO
feedback control system.

In Fig. 2, y0 is the reference variable, y is the measured variable,
e is the difference between y0 and y, u is the controller output, FCtrl
is a force from the controller exerted by an actuator, x is the state
variable from the physical process (i.e. position r, velocity _r or
acceleration €r), and v is the disturbance on the physical process.
Only feedback controllers will be dealt with in this work, hence all
control system terminology used here refers implicitly to feedback
controllers.

For a feedback PID-type controller, the controller output u is
given by

uPIDðtÞ ¼ KpeðtÞþKi

Z
eðtÞdtþKd

d
dt
eðtÞ ð2Þ

where Kp is the proportional gain, Kd is the derivative gain and Ki is
the integral gain from the controller.

Since e is the difference between y0 and y, the controller output
can be split into a feedforward or feedthrough part governed by
y0 and a feedback part governed by y, as shown in [13]. The
feedforward part can be interpreted as an applied force whose
parameters are not affected by the system itself, and will not affect
the internal dynamics of the system. Therefore, it is not of
particular interest in this context. The only part which does affect
the internal dynamics of the system is the feedback part. Thus,
Eq. (2) can more conveniently be written as

uPIDFeedback
ðtÞ ¼ KpyðtÞþKi

Z
yðtÞdtþKd

d
dt
yðtÞ ð3Þ

One view of the control system is to isolate the control
elements from the physical process. The control elements then
principally contain three parts: a sensor, an actuator and a
controller that contains the various controller elements, as shown
in Fig. 3.

As shown in Fig. 3, the effects by the control elements on the
mechanical system can be given as

∂FCtrl
∂x

¼ ∂FCtrl
∂u

∂u
∂y

∂y
∂x

or dFCtrl ¼ GActGCtrlGSens dx ð4Þ

where GAct is the actuator gradient, GCtrl is the controller gradient
and GSens is the sensor gradient.

Similarly, the gradients for a multiple-input multiple-output
(MIMO) system can be written as

dFCtrli ¼
∂FCtrli
∂uj

∂uj

∂yk

∂yk
∂xl

dxl ¼ GActijGCtrljkGSenskl dxl ð5Þ

or, in matrix form, as

dFCtrl ¼
∂FCtrl
∂u

∂u
∂y

∂y
∂x

dx¼ GActGCtrlGSens dx ð6Þ

Hence, as explained in [3], the equation of motion for the free
vibration of a multiple degree of freedom (MDOF) mechanical
system with a MIMO feedback controller can thus be written as

M€rðtÞþC_rðtÞþKrðtÞþGActGCtrlGSensxðtÞ ¼ 0 ð7Þ
where M is the n� n mass matrix, C is the n� n damping matrix,
K is the n� n stiffness matrix and r; _r and €r are the n� 1 position,
velocity and acceleration vectors, respectively. x is a vector of the
system state variables, that is, position, velocity and acceleration.
GAct, GCtrl and GSens are the actuator gradient, controller gradient
and sensor gradient matrices, respectively.

The actuator gradient GAct describes the relationship between
the controller forces FCtrl exerted by the actuator and the output
signals u from the controller, and has dimensions nFCtrl � nu where
nFCtrl is the number of controller forces and nu is the number of
controller outputs. The controller gradient GCtrl describes the
relationship between the input variables y and output variables
u both to and from the controller, respectively; that is, the various
controller gains. Matrix GCtrl has dimensions nu � ny where nu is
the number of controller outputs and ny is the number of
controller inputs. The sensor gradient GSens describes the relation-
ship between the controller input variables y and the system state
variables r; _r and €r represented by the vector x, and has dimen-
sions ny � 3nr where ny is the number of controller inputs and nr is
the number of all system DOFs. x is given as

x¼
r
_r
€r

2
64

3
75 ð8Þ

Vector x has the dimensions 3nr � 1 where nr is the number
of all system DOFs. Each sensor is limited to measure only one
state variable in only one single system DOF or between two
system DOFs.

The matrix product G of the gradient matrices GAct, GCtrl and
GSens has dimensions nFCtrl � 3nr . If G is pre-multiplied with
the topology matrix relating each controller force FCtrli with its
respective system DOFs, and then split into 3 nr � nr matrices, GPos,
GVel and GAcc, one for each state variable r; _r and €r, the matrices
GPos, GVel and GAcc can be added to their respective system matrix,
yielding the following equation system for the free vibration of a
controlled mechanism:

ðMþGAccÞ€rðtÞþðCþGVelÞ_rðtÞþðKþGPosÞrðtÞ ¼ 0 ð9Þ
Eq. (9) is valid for all PID controllers only containing controller

elements proportional to position, velocity or acceleration. Exam-
ples of controllers not covered by Eq. (9) are: position feedback
controllers containing integral gains or acceleration feedback
controllers containing derivative gains, though the latter variant
will not be covered in this work. Based on Eqs. (3) and (9), the
equation of motion for the free vibration of an active MDOF system
containing a position feedback PID controller can be written as
follows:

ðMþGAccÞ€rðtÞþðCþGVelÞ_rðtÞþðKþGPosÞrðtÞþGSSEE

Z
rðtÞdt ¼ 0

ð10Þ

Controller Physical Process0y e FCtrl

v
y

Actuator Sensor
u x

−

Fig. 2. Block diagram for a SISO feedback control system.

0( )y t

Sensor Actuator
( )u t ( )CtrlF t

Control elements

( )y t( )x t
Controller

Fig. 3. Control elements.
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where GSSEE is the controller gradient steady-state error elimina-
tion matrix and

R
r dt is the position time integral (sometimes

referred to as absement) vector of the system. As in Eq. (9), the
dimensions of all the matrices are n� n and the vectors n� 1.

2.1. Non-collocated sensors and actuators

As can be seen from for instance Eq. (5), if a system contains a
sensor located at DOF i and have a corresponding actuator exerting
a force on DOF j, the gain parameters of the controller are to be
added to their respective gradient matrices G only on position Gij.
Hence, for a systemwith only collocated sensors and actuators, the
controller gradient matrices GAcc, GVel, GPos and GSSEE will all be
diagonal matrices. However, for a system with one or more non-
collocated sensors and actuators, the GAcc, GVel, GPos and GSSEE

matrices will be unsymmetrical. This can be illustrated through
the following example:

Fig. 4 illustrates an active MDOF system in which the sensor
and actuator are non-collocated.

The mass-spring-damper system in Fig. 4 consists of three
masses (m1, m2 and m3) in series connected by springs (k1, k2
and k3) and dampers (c1, c2 and c3). Each mass has one DOF:
translation in the horizontal plane, named r1, r2 and r3, respec-
tively. Expressing the position vector as: r¼ ½r1 r2 r3�T , and
the velocity and acceleration vectors in a similar manner, the
mass, damping and stiffness matrix of the system in Fig. 4 can be
written as:

M¼
m1 0 0
0 m2 0
0 0 m3

2
64

3
75; C¼

c1þc2 �c2 0
�c2 c2þc3 �c3
0 �c3 c3

2
64

3
75;

K¼
k1þk2 �k2 0
�k2 k2þk3 �k3
0 �k3 k3

2
64

3
75 ð11Þ

In Fig. 4, a sensor is placed on r1, while the actuator exerts a
force on m3, i.e. directly affecting r3. If the controller of the system
in Fig. 4 is a velocity feedback PID controller, all the matrices GAcc,
GVel and GPos will be non-zero, as shown in [3]. Fig. 5 illustrates a
block diagram for the velocity feedback PID controller used in the
system in Fig. 4.

Based on Eq. (10), this would yield the following gradient
matrices GAcc, GVel, GPos and GSSEE:

GAcc ¼
0 0 0
0 0 0
Kd 0 0

2
64

3
75; GVel ¼

0 0 0
0 0 0
Kp 0 0

2
64

3
75;

GPos ¼
0 0 0
0 0 0
Ki 0 0

2
64

3
75; GSSEE ¼ 0 ð12Þ

The position of the controller gains in their respective matrices
in Eq. (12) are determined by the DOFs of the sensor and actuator
placements. Since the sensor is placed on r1, the controller gains
will be placed in column number 1, and since the actuator affects
r3, the controller gains will be placed in row number 3.

Combining Eqs. (11) and (12) yields the following matrix
equation system for the free vibration of the active system in
Fig. 4 containing a velocity feedback PID controller as follows:

m1 0 0
0 m2 0
Kd 0 m3

2
64

3
75

€r1
€r2
€r3

2
64

3
75þ

c1þc2 �c2 0
�c2 c2þc3 �c3
Kp �c3 c3

2
64

3
75

_r1
_r2
_r3

2
64

3
75

þ
k1þk2 �k2 0
�k2 k2þk3 �k3
Ki �k3 k3

2
64

3
75

r1
r2
r3

2
64

3
75¼ 0 ð13Þ

If the controller for the system in Fig. 4 is a position feedback
PID controller, GAcc will be zero, while all of the matrices GVel, GPos

and GSSEE will be non-zero. Based on Eq. (10), this would yield the
following gradient matrices GAcc, GVel, GPos and GSSEE:

GAcc ¼ 0; GVel ¼
0 0 0
0 0 0
Kd 0 0

2
64

3
75; GPos ¼

0 0 0
0 0 0
Kp 0 0

2
64

3
75;

GSSEE ¼
0 0 0
0 0 0
Ki 0 0

2
64

3
75 ð14Þ

Combining Eqs. (11) and (14) yields the following matrix
equation system for the free vibration of the active system in
Fig. 4 containing a position feedback PID controller as follows:

m1 0 0
0 m2 0
0 0 m3

2
64

3
75

€r1
€r2
€r3

2
64

3
75þ

c1þc2 �c2 0
�c2 c2þc3 �c3
Kd �c3 c3

2
64

3
75

_r1
_r2
_r3

2
64

3
75

þ
k1þk2 �k2 0
�k2 k2þk3 �k3
Kp �k3 k3

2
64

3
75

r1
r2
r3

2
64

3
75þ

0 0 0
0 0 0
Ki 0 0

2
64

3
75

R
r1 dtR
r2 dtR
r3 dt

2
64

3
75¼ 0

ð15Þ
As can be seen in both Eqs. (13) and (15), the system matrices

are unsymmetrical if a sensors and its corresponding actuator are
non-collocated. This means that ordinary symmetric eigensolver
methods, such as for instance the Lanczos algorithm [12], which is
a typical eigensolver method used in FE software systems, cannot
be used. If such is the case, non-symmetric eigensolver methods,
such as for instance the Arnoldi algorithm [27] or the QZ algorithm
[28], may be used instead.

2.2. Eigenvalue analysis of systems containing damping
and steady-state error elimination

Based on Eq. (9), the generalized eigenvalue problem for an
undamped system can be given as follows:

ðKþGPosÞΦ¼ ðMþGAccÞΦΛ ð16Þ

1( )CtrlF r
1m

1k

1c

1r

2m
2k

2c

2r

3m
3k

3c

3r

Fig. 4. Active MDOF system with non-collocated sensor and actuator.

e
Mr + Cr + Kr

y F
v

y
Actuator Sensor

u

K

K dt

dK
dt

r

−

∫

Fig. 5. Velocity feedback PID controller.
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where Λ is diagonal matrix of the generalized eigenvalues and Φ
is full matrix whose columns are the corresponding eigenvectors.
For systems also containing damping, the system equations can be
expressed in first-order or state-space form as for instance

Ax�B _x¼ 0 ð17Þ
where

x¼ r
_r

� �
; _x¼

_r
€r

� �
;

A¼
ðKþGPosÞ 0

0 �ðMþGAccÞ

" #
; B¼

�ðCþGVelÞ �ðMþGAccÞ
�ðMþGAccÞ 0

" #

ð18Þ
The dimensions of x and _x are 2n� 1, whereas the dimensions

of A and B are both 2n� 2n; where n is the number of DOFs. The
generalized eigenvalue problem may now be expressed as follows:

AΦ¼ BΦΛ ð19Þ
The eigenvectors φi in Φ will occur in accordance with the

state vector x, i.e.

φi ¼
r
_r

� �
ð20Þ

The equation of motion for the free vibration of an SDOF
mechanical system with a position feedback PID controller can,
based on Eq. (10), be written as follows:

m€rðtÞþðcþKdÞ_rðtÞþðkþKpÞrðtÞþKi

Z
rðtÞ dt ¼ 0 ð21Þ

For convenience, Eq. (21) can be rewritten as follows:

mef f €rþcef f _rþkef f rþqef f

Z
r dt ¼ 0 ð22Þ

where meff is the effective mass of the system, while ceff is the
effective damping, keff is the effective stiffness and qeff is the
effective steady-state error elimination of the system. It is implied
that the parameters meff, ceff, keff and qeff are positive. Assuming a
solution for Eq. (22) on the form rðtÞ ¼ est gives a characteristic
equation

mef f s
2þcef f sþkef f þqef f s

�1 ¼ 0 ð23Þ
which is equal to

mef f s
3þcef f s

2þkef f sþqef f ¼ 0 ð24Þ
Eq. (24) is a cubic equation and has a solution for the roots s as

either three real and unequal roots, three real roots in which at
least two are equal, or one real root and a pair of complex
conjugate roots [29]. In general, the imaginary part of the roots s
is the frequency of oscillation and the real part is the constant in
the exponent of the oscillation amplitude envelope. The stability of
the system is hence determined by the sign of the real part of the
roots s, while the oscillation is determined by the imaginary part
of the roots s, meaning that if the roots s does not contain an
imaginary part, the system will not oscillate. If all the parameters
meff, ceff, keff and qeff in Eq. (24) are positive, and the solution of said
equation has three real roots, the system is overcritically damped.
This is because if all of the parameters in Eq. (24) are positive, all
three real roots will be negative, cf. Descartes' rule of signs. If the
solution of Eq. (24) has three real roots in which at least two are
equal, the system is critically damped, and if the roots of Eq. (24)
are a pair of complex conjugate roots, the system is undercritically
damped. For an undercritically damped system, a negative real
part of the complex conjugate roots means that the system is
stable. If the real part of the complex conjugate roots is positive,
the oscillation is growing, and the system is therefore unstable.
The borderline case for stability is when the real part of the

complex conjugate roots of s is zero, as explained in for instance
[8]. When this occurs, s will be equal to ωn: For this to occur, cef f s
and qef f s

�1 have to be zero. These yields

cef f s�qef f s
�1 ¼ 0 ) qef f ¼ cef f s

2 ð25Þ

and since for this special case, s¼ωn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kef f =mef f

q
, the stability

borderline value for qeff can thus be derived as follows:

qef f s ¼ cef f s
2 ¼ cef fωn

2 ¼ cef f
kef f
mef f

ð26Þ

In order to derive the roots of Eq. (22), one possibility is to
transform it into a first-order or state-space form. One possible
way of writing Eq. (22) in state-space form is as given in Eq. (17),
where now x, _x, A and B are given as follows:

x¼

R
r dt

r
_r

2
64

3
75; _x¼

r
_r
€r

2
64

3
75; A¼

qef f 0 0
0 kef f 0
0 0 mef f

2
64

3
75;

B¼
�kef f �cef f �mef f

kef f 0 0
0 mef f 0

2
64

3
75 ð27Þ

In general, the dimensions of x and _x are 3n� 1, whereas the
dimensions of A and B are both 3n� 3n; where n is the number of
DOFs. In order to obtain the roots of Eq. (24), the generalized
eigenvalue problem can be solved with the matrices in Eq. (27)
inserted into Eq. (19). The diagonal elements of the eigenvalue
matrix Λ correspond to the roots s of Eq. (24).

Based on Eqs. (10) and (22), the second-order differential
equation of the free vibration for an MDOF system can be written
as follows:

Mef f €rþCef f _rþKef f rþQ ef f

Z
r dt ¼ 0 ð28Þ

where Meff is the effective mass matrix of the system, while Ceff is
the effective damping matrix, Keff the effective stiffness matrix and
Qeff the effective steady-state error elimination matrix of the
system. The dimensions of all the matrices are n� n and the
vectors n� 1. If the system in Eq. (28) is written in state-space
form as in Eq. (17), its state-space matrices would be

x¼

R
r dt
r
_r

2
64

3
75; _x¼

r
_r
€r

2
64

3
75; A¼

Q ef f 0 0
0 Kef f 0
0 0 Mef f

2
64

3
75;

B¼
�Kef f �Cef f �Mef f

Kef f 0 0
0 Mef f 0

2
64

3
75 ð29Þ

where the dimensions of x and _x are 3n� 1, and those of A and B
are both 3n� 3n.

3. Numerical examples

In this chapter, four examples for assessing the validity of the
theory derived in Chapter 2 are presented. The first example
focuses on illustrating the asymmetry which occurs in the system
matrices for a system containing non-collocated sensors and
actuators, as explained in Section 2.1. The second example aims
at verifying the proposed properties of a system containing a term
proportional to the time integral of the position, i.e. steady-state
error elimination, as derived in Section 2.2. In the third example,
the objective is to test the proposed method for modal analysis of
active mechanisms containing both damping, steady-state error
elimination and non-collocated sensors and actuators, as pre-
sented in Eq. (29).
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Since all of the former examples are fairly simple, their utili-
tarian value may be lost. To compensate for this, a more complex
and realistic example consisting of simple car front suspension
is also included. The simple car front suspension example is
intended as an illustrative example only; therefore, it is deliber-
ately not an exact replication of a real physical product. Because of
this, the parameter values used for the suspension are not of
importance in this context.

3.1. Non-collocated sensors and actuators

In order to test the theory presented in Section 2.1, some
numerical examples were made based on the active system in
Fig. 4. For each version of the system, two separate methods for
deriving the natural frequencies of the system were used:
(a) modal analysis by solving the eigenvalue problem, and
(b) frequency analysis of the time responses using the fast Fourier
transform (FFT) algorithm. By comparing the results from the two
methods (a) and (b), the degree of validity of the theory should be
revealed, meaning that if both methods yield concurring results,
the validity of the method is supported. The mechanical properties
of the system were set to: m1 ¼m2 ¼m3 ¼ 1 kg, c1 ¼ c2 ¼ c3 ¼
0 Ns=m and k1 ¼ k2 ¼ k3 ¼ 100 N=m, while the controller was set to
be a velocity feedback PID controller with controller gains Kp ¼ 0,
Ki ¼ 50 and Kd ¼ 0:5. Damping, both passive and active, were
deliberately not included in this example in order to better see
all frequency peaks in the FFT plots. To derive the natural
frequencies using the FFT, the mass m3 was given an initial
deflection and the time domain response of the mechanism was
recorded. This simulation was carried out in FEDEM, with a total
simulation time of 10 s and a simulation time increment of 0.001 s,
yielding a frequency sampling rate fs of 1000 Hz and a frequency
resolution of approximately 0.1 Hz. The result from the FFT is
shown in Fig. 6.

As can be seen in Fig. 6, three frequency peaks are present,
appearing at ω1 ¼ 0:9 Hz, ω2 ¼ 2:1 Hz and ω3 ¼ 2:8 Hz.

Inserting the given values for the active system into Eq. (13)
gives the following equation:

1 0 0
0 1 0
0:5 0 1

2
64

3
75

€r1
€r2
€r3

2
64

3
75þ

0 0 0
0 0 0
0 0 0

2
64

3
75

_r1
_r2
_r3

2
64

3
75

þ
200 �100 0

�100 200 �100
50 �100 100

2
64

3
75

r1
r2
r3

2
64

3
75¼ 0 ð30Þ

which, by solving the eigenvalue problem, yields the eigenfrequencies
ω1 ¼ 0:8613 Hz, ω2 ¼ 2:0795 Hz and ω3 ¼ 2:7566 Hz. A comparison
of the results from the FFT and the modal analysis is shown in Table 1.

As can be seen in Table 1, the two methods yield concurrent
eigenfrequency estimates for the system. To better distinguish
between the results, the eigenfrequencies derived by the modal
analysis are given with four decimals, while the FFT is only given
with one since the FFT only has a frequency resolution of 0.1 Hz.

By comparison, if the active system in Fig. 4 has collocated
sensor and actuator, both acting on DOF r3, the following system
equation based on Eq. (9) is given

1 0 0
0 1 0
0 0 1:5

2
64

3
75

€r1
€r2
€r3

2
64

3
75þ

0 0 0
0 0 0
0 0 0

2
64

3
75

_r1
_r2
_r3

2
64

3
75

þ
200 �100 0

�100 200 �100
0 �100 150

2
64

3
75

r1
r2
r3

2
64

3
75¼ 0 ð31Þ

which, by solving the eigenvalue problem, yields the eigen-
frequencies ω1 ¼ 0:9498 Hz, ω2 ¼ 1:9350 Hz and ω3 ¼ 2:8317 Hz.
The FFT plot for this system is shown in Fig. 7.

As can be seen in Fig. 7, three frequency peaks are present,
appearing at ω1 ¼ 1:0 Hz, ω2 ¼ 1:9 Hz and ω3 ¼ 2:8 Hz. A compar-
ison of the results from the FFT and the modal analysis is shown
in Table 2.

As can be seen in Table 2, the two methods yield concurrent
eigenfrequency estimates for the system. By comparing the results
presented in Table 1 and Table 2, the difference between a system

Fig. 6. FFT plot of time series of displacements measured at r2.

Table 1
Comparison of eigenfrequencies derived using FFT and modal analysis.

FFT (Hz) Modal analysis (Hz)

ω1 0.9 0.8613
ω2 2.1 2.0795
ω3 2.8 2.7566

Fig. 7. FFT plot of time series of displacements measured at r2 for system with
collocated sensor and actuator.
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containing collocated sensor and actuator vs. a system containing
non-collocated sensor and actuator is shown to be significant.

In order to further illustrate the theory, two more tests were
performed on the given system, although with a slight alteration:
Kd was changed to 0.3 and 0.7. The FFT plots for these tests are
shown in Fig. 8 and Fig. 9, and the results from the tests are shown
in Table 3 and Table 4, respectively. For the modal analysis of these
tests, the relevant values for Kd were altered in Eq. (30), and the

eigenvalue problem was solved. The results from the modal
analyses are also shown in Table 3 and Table 4.

As seen in both Tables 3 and 4, the FFT and the eigenvalue
problem yield concurrent results, which further support a validity
of the presented theory. As before, the difference between the
results is probably due to the number of given decimals.

3.2. Active system containing damping and steady-state error
elimination

In order to test the theory derived in Section 2.2, four experi-
ments involving an active SDOF system were conducted. Fig. 10
depicts a sketch of the experiment setup.

The system in Fig. 10 consists of a mass m1 connected to a wall
via a spring k1 and a damper c1. There is one DOF in the system:
translation in the horizontal direction (r1). An active force FCtrl is
acting on the mass m1; the active force is governed by a position
feedback PID controller whose reference is the position r1 of the
mass. The parameters of the system were given as follows:

m1¼1 kg, c1¼8 Ns/m, k1¼12 N/m, Kp¼4, Ki¼q and Kd¼2.
Based on Eq. (22), the effective mass m, damping c and stiffness
k of the system are: m¼1 kg, c¼10 Ns/m and k¼16 N/m, yielding
an undamped natural frequency of

ωn ¼
ffiffiffiffiffi
k
m

r
¼

ffiffiffiffiffiffi
16
1

r
¼ 4 rad=s¼ 0:6366 Hz ð32Þ

and a value for the critical damping of

cc ¼
ffiffiffiffiffiffiffiffiffiffi
4mk

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 1� 16

p
¼ 8 Ns=m ð33Þ

A comparison of the values for c and cc reveals that, in principle
at least, the system is overcritically damped, i.e. no oscillations
should occur. However, increasing Ki should make the system start

Table 2
Comparison of eigenfrequencies derived using FFT and modal analysis for system
with collocated sensor and actuator.

FFT (Hz) Modal analysis (Hz)

ω1 1.0 0.9498
ω2 1.9 1.9350
ω3 2.8 2.8317

Fig. 8. FFT plot of time series of displacements measured at r2 for system with
Kd¼0.3.

Fig. 9. FFT plot of time series of displacements measured at r2 for system with
Kd¼0.7.

Table 3
Comparison of eigenfrequencies derived using FFT and modal analysis for system
with Kd¼0.3.

FFT (Hz) Modal analysis (Hz)

ω1 0.9 0.8852
ω2 2.0 1.9739
ω3 2.8 2.8259

Table 4
Comparison of eigenfrequencies derived using FFT and modal analysis for system
with Kd¼0.7.

FFT (Hz) Modal analysis (Hz)

ω1 0.8 0.8400
ω2 2.2 2.2093
ω3 2.7 2.6606

1m

1k

1c

1r

1( )CtrlF r

Fig. 10. Active SDOF system.
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to oscillate. Using Eq. (26), the value for Ki that should give a
constant oscillation is

qs ¼ c
k
m

¼ 10� 16
1

¼ 160 N=ms ð34Þ

Four different experiments were performed on this system by
changing the value for the integral gain Ki from 0 to 80, 160 and
240, which should yield the following systems: overcritically
damped, undercritically damped, undamped/marginally stable
and unstable, respectively. The objectives of the experiments were
to illustrate how Ki affects the system and to derive the eigen-
frequencies and damping ratios for each case using the method
outlined in Section 2.2. Additionally, in order to verify the theory,
one time simulation of the free vibration of the system was
performed for each case. The simulations were carried out in
FEDEM; the system was set into motion by giving the mass an
initial displacement. Each simulation had a total simulation time
of 5 s, with a time increment of 0.0005 s.

3.2.1. Ki¼0: overcritically damped system
The time response for the simulationwith Ki¼0 is shown in Fig. 11.
As seen from Fig. 11, the system is not oscillating. Solving

Eq. (19) in MATLAB using the eig() routine yields a diagonal matrix
D of generalized eigenvalues and a full matrix V, whose columns
are the corresponding eigenvectors. The diagonal elements in D
correspond to the roots s of Eq. (24) when using the system shown
in Eq. (27). Hence, solving Eq. (24) with respect to s, or Eq. (19)
inserted for A and B in accordance with Eq. (27), yields the
eigenvalues as three real, negative and unequal values, thereby
indicating a system without oscillations.

3.2.2. Ki¼80: undercritically damped system
The time response for the simulation with Ki¼80 is shown in

Fig. 12.
As seen from Fig. 12, the system is oscillating with decreas-

ing amplitudes. Max peaks 1 and 2 occur at time t1¼1.6770 s
and t2¼3.8280 s with amplitudes x1¼0.0225356 m and x2¼
0.0095886 m, respectively. This yields a time period of

τ¼ t2�t1 ¼ 3:8280�1:6770¼ 2:1510 s ð35Þ

and an eigenfrequency of

ω¼ 1
τ
¼ 1
2:1510

¼ 0:4649 Hz ð36Þ

The damping ratio ζ of an oscillation can be derived from [7]

δ¼ ln
x1
x2

� �
¼ ln eζωnτ ) ζ ¼ δ

ωnτ
¼ lnðx1=x2Þ

ωnτ
ð37Þ

Inserting for x1 and x2 yields the following damping ratio

ζ ¼
ln x1

x2

� �
ωnτ

¼ lnð0:0225356=0:0095886Þ
4� 2:1510

¼ 0:0993 ð38Þ

As in Section 3.2.1, solving Eq. (24) with respect to s, or Eq. (19)
inserted for A and B in accordance with Eq. (27), yields the
eigenvalues as one real and negative value and a pair of complex
conjugate values. The complex conjugate values are:

s¼ �0:397072:9210i ð39Þ

which gives the eigenfrequency

ω¼ 2:9210
2π

¼ 0:4649 Hz ð40Þ

and the damping ratio

ζ ¼ ��0:3970
ωn

¼ ��0:3970
4

¼ 0:0993 ð41Þ

The results from this experiment are summarized in Table 5.
As seen from the results presented in Table 5, the time simu-

lation and solution of the eigenvalue problem yield identical
results.

Fig. 11. Time response of system with Ki¼0.
Fig. 12. Time response of system with Ki¼80.

Table 5
Results from experiments on system with q¼80.

ω ½Hz� ζ

Time simulation 0.4649 0.0993
Eigenvalue problem 0.4649 0.0993
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3.2.3. Ki¼160: marginally stable system
The time response for the simulation with Ki¼160 is shown in

Fig. 13.
As seen from Fig. 13, the system is oscillating with a constant

amplitude. Max peaks 1 and 2 occur at time t1¼1.2735 s and t2¼
2.8440 s with amplitudes x1¼0.0278458 m and x2¼0.0278311 m,
respectively. This yields a time period of

τ¼ t2�t1 ¼ 2:8440�1:2735¼ 1:5705 s ð42Þ
and an eigenfrequency of

ω¼ 1
τ
¼ 1
1:5705

¼ 0:6367 Hz ð43Þ

Inserting for x1 and x2 yields the following damping ratio

ζ ¼ lnðx1=x2Þ
ωnτ

¼ lnð0:0278458=0:0278311Þ
4U1:5705

¼ 0:0001 ð44Þ

Solving Eq. (24) with respect to s, or Eq. (19) inserted for A and
B in accordance with Eq. (27), yields the eigenvalues as one real
and negative value and a pair of complex conjugate values. The
complex conjugate values are

s¼ 074i ð45Þ
which gives the eigenfrequency

ω¼ 4
2π

¼ 0:6366 Hz ð46Þ

and the damping ratio

ζ ¼ � 0
ωn

¼ �0
4
¼ 0 ð47Þ

The results from this experiment are summarized in Table 6.

As seen from the results presented in Table 6, the time
simulation and solution of the eigenvalue problem yield almost
identical results. The difference in the results between the time
simulation and eigenvalue problem is probably due to the inherent
limited numerical accuracy of the time simulation.

3.2.4. Ki¼240: unstable system
The time response for the simulation with Ki¼240 is shown in

Fig. 14.
As seen from Fig. 14, the system is oscillating with increas-

ing amplitudes. Max peaks 1 and 2 occur at time t1¼1.0935 s
and t2¼2.4180 s with amplitudes x1¼0.0297421 m and x2¼
0.0448529 m, respectively. This yields a time period of

τ¼ t2�t1 ¼ 2:4180�1:0935¼ 1:3245 s ð48Þ
and an eigenfrequency of

ω¼ 1
τ
¼ 1
1:3245

¼ 0:7550 Hz ð49Þ

Inserted for x1 and x2 yields the following damping ratio

ζ ¼ lnðx1=x2Þ
ωnτ

¼ lnð0:0297421=0:0448529Þ
4U1:3245

¼ �0:0775 ð50Þ

Solving Eq. (24) with respect to s, or Eq. (19) inserted for A and
B in accordance with Eq. (27), yields the eigenvalues as one real
and negative value and a pair of complex conjugate values. The
complex conjugate values are

s¼ 0:310574:7434i ð51Þ
which gives the eigenfrequency

ω¼ 4:7434
2π

¼ 0:7549 Hz ð52Þ

Fig. 13. Time response of system with Ki¼160.

Table 6
Results from experiments on system with q¼160.

ω ½Hz� ζ

Time simulation 0.6367 0.0001
Eigenvalue problem 0.6366 0

Fig. 14. Time response of system with Ki¼240.

Table 7
Results from experiments on system with q¼240.

ω ½Hz� ζ

Time simulation 0.7550 �0.0775
Eigenvalue problem 0.7549 �0.0776
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and the damping ratio

ζ ¼ �0:3105
ωn

¼ �0:3105
4

¼ �0:0776 ð53Þ

The results from this experiment are summarized in Table 7.
As can be seen from the results presented in Table 7, the time

simulation and solution of the eigenvalue problem yield almost
identical results. Again, the difference in the results between the
time simulation and eigenvalue problem is probably due to the
inherent limited numerical accuracy of the time simulation.

3.2.5. Varying q from 0 to 2qs
When solving Eq. (24) with respect to s or Eq. (19) inserted for

A and B in accordance with Eq. (27), the effects of varying q can be
seen over a greater range of values. The eigenfrequency ω and
damping ratio ζ for 0rqr2qs ¼ 0…320 are shown in Fig. 15.

As seen in Fig. 15, the eigenfrequency ω goes from 0 Hz to
0.8481 Hz while the damping ratio ζ goes from 0.2301 to �0.1427.
For qo8, ω¼ 0 Hz, indicating a system with a non-oscillatory
motion, i.e. an overcritically damped system. For this reason, ζ
does not have any values for qo8. For q4160, ζo0, which indi-
cates a system with “negative damping”, i.e. a growing oscillation
and thus an unstable system.

3.3. Active MDOF system with position feedback PID controller
and non-collocated sensor and actuator

To further test the theory derived in Chapter 2, the system
shown in Fig. 16 was used. To illustrate the effects of the controller,
two versions of the system in Fig. 16 were made: one with and
one without the controller, i.e. a passive and an active system,
respectively.

The system in Fig. 16 is comprised of three masses (m1, m2 and
m3) in series connected by springs (k1, k2 and k3) and dampers
(c1, c2 and c3). Each mass has one DOF: translation in the
horizontal plane, named r1, r2 and r3, respectively. The system is
controlled by a position feedback PID controller with a sensor
measuring position of r1, whereas an actuator is affecting mass m3

as a force FCtrl. The mechanical properties of the system were set
to: m1 ¼m2 ¼m3 ¼ 1 kg, c1 ¼ c2 ¼ c3 ¼ 1 Ns=m and k1 ¼ k2 ¼
k3 ¼ 100 N=m, and the controller gains to: Kp ¼ 80, Ki ¼ 20 and
Kd ¼ 0:5. Arranging these system properties in matrix form based
on Eq. (10), and expressing the position vector as: r¼ ½r1 r2 r3�T

and the velocity and acceleration vectors in a similar manner, the
matrices of the mechanical system are

M¼
1 0 0
0 1 0
0 0 1

2
64

3
75; C¼

2 �1 0
�1 2 �1
0 �1 1

2
64

3
75;

K¼
200 �100 0

�100 200 �100
0 �100 100

2
64

3
75 ð54Þ

while the matrices of the controller gradients are

GAcc ¼ 0; GVel ¼
0 0 0
0 0 0
0:5 0 0

2
64

3
75; GPos ¼

0 0 0
0 0 0
80 0 0

2
64

3
75;

GSSEE ¼
0 0 0
0 0 0
20 0 0

2
64

3
75 ð55Þ

For the passive version of the system, only the mechanical
properties of the system were included in the eigenvalue problem.
To derive the eigenfrequencies of the passive system in Fig. 16 with
the given properties, the 2n generalized eigenvalue problem
shown in Eq. (19) was solved. Based on Eq. (18), the A and B
matrices for Eq. (19) are

A¼

200 �100 0 0 0 0
�100 200 �100 0 0 0

0 �100 100 0 0 0
0 0 0 �1 0 0
0 0 0 0 �1 0
0 0 0 0 0 �1

2
666666664

3
777777775

ð56Þ

Fig. 15. ω and ζ for 0rqr2qs ¼ 0…320.

1( )CtrlF  r
1m

1k

1c

1r

2m
2k

2c

2r

3m
3k

3c

3r

Fig. 16. Active MDOF system with position feedback PID controller with non-
collocated sensor and actuator.
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B¼

�2 1 0 �1 0 0
1 �2 1 0 �1 0
0 1 �1 0 0 �1

�1 0 0 0 0 0
0 �1 0 0 0 0
0 0 �1 0 0 0

2
666666664

3
777777775

ð57Þ

Solving Eq. (19) with Eq. (56) and Eq. (57) inserted yields the
following eigenfrequencies: ω1 ¼ 0:7081 Hz, ω2 ¼ 1:9808 Hz and
ω3 ¼ 2:8562 Hz. Alternatively, the 3n generalized eigenvalue pro-
blem with A and B matrices as shown in Eq. (29) can be used.
The A and B matrices for Eq. (19) are then

A¼

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 200 �100 0 0 0 0
0 0 0 �100 200 �100 0 0 0
0 0 0 0 �100 100 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

2
66666666666666664

3
77777777777777775

ð58Þ

B¼

�200 100 0 �2 1 0 �1 0 0
100 �200 100 1 �2 1 0 �1 0

0 100 �100 0 1 �1 0 0 �1
200 �100 0 0 0 0 0 0 0

�100 200 �100 0 0 0 0 0 0
0 �100 100 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0

2
66666666666666664

3
77777777777777775
ð59Þ

Solving Eq. (19) with Eqs. (58) and (59) inserted yields identical
eigenfrequencies as the solution obtained using Eqs. (56) and (57) ,
i.e. ω1 ¼ 0:7081 Hz, ω2 ¼ 1:9808 Hz and ω3 ¼ 2:8562 Hz.

To derive the eigenfrequencies of the active system in Fig. 16
with the given properties, the generalized eigenvalue problem
shown in Eq. (19) was solved based on Eq. (29). The A and B
matrices in Eq. (19) are

A¼

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

20 0 0 0 0 0 0 0 0
0 0 0 200 �100 0 0 0 0
0 0 0 �100 200 �100 0 0 0
0 0 0 80 �100 100 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

2
66666666666666664

3
77777777777777775

ð60Þ

B¼

�200 100 0 �2 1 0 �1 0 0
100 �200 100 1 �2 1 0 �1 0
�80 100 �100 �0:5 1 �1 0 0 �1
200 �100 0 0 0 0 0 0 0

�100 200 �100 0 0 0 0 0 0
80 �100 100 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0

2
66666666666666664

3
77777777777777775

ð61Þ

Solving Eq. (19) with Eq. (60) and Eq. (61) inserted yields the
following eigenfrequencies: ω1 ¼ 1:0783 Hz, ω2 ¼ 1:7088 Hz and
ω3 ¼ 2:9158 Hz.

To verify the eigenfrequencies derived for both versions of the
system in Fig. 16, two time simulations of the system were
performed in FEDEM, one for the passive and one for the active
system. To initiate the simulations, the mass m3 was given an initial
deflection and the time domain response of the mechanism was
recorded. The time simulations ran for 10 s with a time increment
of 0.001 s, giving a frequency sampling rate fs of 1000 Hz and
a frequency resolution of approximately 0.1 Hz. The time domain
results from the simulations for position r2 were transformed into
frequency domain results by using the FFT algorithm. The FFT
results for the passive and active systems are shown in Figs. 17
and 18, respectively.

In both Figs. 17 and 18, three frequency peaks are present,
appearing at ω1 ¼ 0:7 Hz, ω2 ¼ 2:0 Hz and ω3 ¼ 2:9 Hz, and ω1 ¼
1:1 Hz, ω2 ¼ 1:7 Hz and ω3 ¼ 2:9 Hz, respectively. The results from
the simulations and the modal analyses are shown in Table 8.

Fig. 17. FFT plot of time series of displacements measured at r2 for system without
controller.

Fig. 18. FFT plot of time series of displacements measured at r2 for system with
controller.
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As seen from the results in Table 8, there is a close correlation
between the FFT and the modal analysis for both versions of the
system in Fig. 16, thus indicating a validity of the modal analyses.
Also, changing the system from passive to active greatly alters the
eigenfrequencies of the system.

3.4. Simple car front suspension

Fig. 19 shows a FEDEM model of a simple car front suspension.
The suspension consists of mainly three structural parts:

(1) upper control arm, (2) steering knuckle and (3) lower control
arm, in addition to a spring and damper connected to the lower
control arm and ground. Each structural part of the suspension is
modeled as an FE model. Ball joints connect the steering knuckle
to the upper and lower control arms, and the upper and lower
control arms to the ground. The steering knuckle's translational
movements in global x-direction are restrained at the attachment
point of the steering link, making the whole suspension only able
to rotate about the global x-axis.

This particular suspension contains both a passive and an active
shock absorbing system. The passive system consists of a linear
spring and viscous damper, while the active system is an actuator
connected to the lower control arm at the attachment point of the
passive system. The active system is governed by a position
feedback PID controller with collocated sensor and actuator. The
weight of the whole suspension is 2.1 kg, the passive spring has a
stiffness of 10,000 N/m, the damper a damping coefficient of 50
Ns/m while the controller gains are: Kp¼5000, Ki¼200,000 and
Kd¼20. Both the passive and active system are deliberately not
fully optimized, but have parameters chosen low in order to easier
distinguish between relevant and irrelevant eigenfrequencies.

To verify the accuracy of the eigenfrequency calculation of the
suspension, a time simulation response of the suspension when
suddenly subjected to gravity was analyzed using the FFT algo-
rithm. The time responses of displacement in global z-direction at
steering knuckle center were used. The simulation ran for 10 s
with time increment 0.001 s, yielding a frequency sampling rate fs
of 1000 Hz and a frequency resolution of approximately 0.1 Hz.
The FFT plot of the time series is shown in Fig. 20.

In Fig. 20, one frequency peak is present, appearing at
ω1 ¼ 9:0 Hz. Solving the generalized eigenvalue problem of the
coupled passive and active system using the proposed 3n state-
space method (including steady-state error elimination) and the

Table 8
Results from FFT and modal analysis for the passive and active version of the
system in Fig. 16.

Without controller With controller

FFT (Hz) Modal analysis (Hz) FFT (Hz) Modal analysis (Hz)

ω1 0.7 0.7081 1.1 1.0783
ω2 2.0 1.9808 1.7 1.7088
ω3 2.9 2.8562 2.9 2.9158

Fig. 19. FEDEM model of simple car front suspension. The structural parts of the suspension are: (1) upper control arm, (2) steering knuckle and (3) lower control arm.

Fig. 20. FFT plot of time series of displacements measured at steering knuckle
center.

Table 9
Results from FFT and eigenfrequency calculations.

FFT (Hz) 3n state-space (Hz) 2n state-space (Hz)

ω1 9.0 8.9699 8.9217
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traditional 2n state-space method (excluding steady-state error
elimination) yields the results presented in Table 9.

As can be seen from the results in Table 9, there is a close
correlation between the FFT and the 3n state-space method while
this is not so much the case for the 2n state-space method.

4. Discussion

In Section 3.1, a total of three cases for an SDOF system
containing non-collocated sensors and actuators were examined.
As seen from the results presented in that section, there is a close
correlation between the theory presented in Section 2.1 and the
results from the tests performed. The comparison made between a
system containing collocated vs. non-collocated sensors and
actuators in Section 3.1 shows that the difference between the
two systems is significant. As mentioned in Section 2.1, if a system
contains one or more non-collocated sensors and actuators, the
system matrices will be unsymmetrical. This means that ordinary
symmetric eigensolver methods cannot be used. If such is the case,
non-symmetric eigensolver methods may be used instead [17,30].

In Section 3.2, four cases of an SDOF system containing a posi-
tion feedback PID controller were examined, putting an emphasis
on the effects on the eigenfrequency and damping ratio caused by
the steady-state error elimination. The results demonstrate that
the steady-state error elimination can make a non-oscillatory
system become not only oscillatory, but also highly unstable. Both
eigenfrequency and damping ratio were shown to be affected by
the steady-state error elimination term, indicating the importance
of including these terms when performing modal analysis of
systems containing such effects. Moreover, the presented method
for deriving eigenvalues and eigenvectors for such systems using a
3n state-space formulation appears to be valid since all results
derived using the state-space method concur well with the results
derived using time simulations.

In Section 3.3, one example utilizing the theory derived in
Chapter 2 was given. The system in the example contained a
position feedback PID controller with a non-collocated sensor and
actuator. Two tests were run on the system, one with and one
without the controller being activated. The results show that the
proposed eigenvalue solution method yields concurring results
compared with results derived using discrete Fourier transforms of
the time simulations. They also reveal the numerical difference in
the derived eigenvalues for the passive and active system, once
again highlighting the importance of including all properties in the
system model when performing modal analysis of active systems.

Since the examples given in Sections 3.1 through 3.3 are fairly
simple, their utilitarian value may be lost. In Section 3.4, the 3n
state-space method was used on a more realistic example con-
sisting of a simple car front suspension. Results obtained through
this example showed that the proposed method is able to
accurately handle larger systems. A small note can also be made
from comparing the results of the effects of including/excluding
the steady-state error elimination. The difference is not big,
however, it is in the same magnitude as comparing damped versus
undamped eigenfrequencies.

One major concern about the proposed 3n state-space method
is the threefold increase in dimensions of the eigenvalue problem.
A typical method or algorithm for solving the full eigenvalue
problem in FE software systems is the QR [7,10,28,30–34] or QZ
algorithm [28,33]; the QZ algorithm being a generalization the QR
algorithm [28]. The QR algorithm is of order n3 [30]. For the
proposed 3n state-space method, this would mean an (3n)3/n3

increase in computation time for systems of large n, which
means that solving the eigenvalue problem using the proposed

3n state-space method will be up to 27 times more expensive with
respect to computational time than an n-space method.

It is worth mentioning that the proposed 3n state-space
method given by Eq. (29) has not been considered as being
optimized with respect to computational efficiency. There may
also be other and more computational cost effective and/or well-
conditioned ways of expressing that equation. The main effort in
this work has been directed at deriving a functional expression,
not an optimal one.

The proposed 3n state-space method is intended as a comple-
ment to the n-space method proposed by the authors in [3].
The proposed n-space method takes its basis in the same methods
as the presented 3n state-space method, i.e. Eqs. (9) and (10),
respectively, and is able to handle controller properties equivalent
to mechanical mass and stiffness, but can be expanded to also
include proportional/Rayleigh damping. The n-space method
should be easier to implement in an FE software system and is
more computationally effective than the presented 3n state-space
method; however, it does not handle non-proportional damping
or steady-state error elimination. For situations in which solving
speed is more important than solution accuracy, or the effects by
damping and steady-state error elimination are negligible with
respect to the modal parameters, the n-space method can be used.
Yet, if solution accuracy is an issue, or a stability analysis is desired,
the presented 3n state-space method may be used. By offering
these complementary methods for deriving the modal parameters
of active flexible multibody systems, the ability to perform modal
analyses of such systems for engineers working in an FE environ-
ment may be greatly improved.

5. Conclusion

In this work, a method for solving the eigenvalue problem for
active multiple degrees of freedom systems containing position
feedback PID controllers and non-collocated sensors and actuators
has been derived and verified through numerical examples.
The derived theory is intended to be implemented in a finite
element software system, providing a powerful and accurate tool
for engineers working in a finite element environment when
performing modal analysis of active flexible multibody systems.
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