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Abstract Simulation and prediction of eigenfrequencies

and mode shapes for active flexible multibody systems is

an important task in disciplines such as robotics and

aerospace engineering. A challenge is to accurately include

both controller effects and flexible body dynamics in a

multidisciplinary system model appropriate for modal

analysis. A method for performing modal analyses of such

systems in a finite element environment was recently

developed by the authors. On issue is, however, that for

engineers working in a finite element environment, the

controller properties are not always explicitly available

prior to modal analyses. The authors encountered this

problem when working with the design of a particular

offshore windmill. The controller for the windmill was

delivered in the form of a dynamic link library (dll) from a

third party provider, and when performing virtual testing of

the windmill design, it was of great importance to use the

‘‘real’’ controller in the form of the provided dll, rather than

re-model it in for instance Simulink or EASY5. This paper

presents a method for estimating the controller parameters

of PID-type controllers when solving the closed-loop

eigenvalue problem for active flexible multibody systems

in a finite element environment. The method is based on

applying incremental changes, perturbations, to relevant

system variables while recording reactions from other

system variables. In this work, the theory of the method is

derived and the method is tested through several numerical

examples.

Keywords Modal analysis � Finite element method �
Control system � Parameter estimation � Perturbation

1 Introduction

Modal analysis and dynamic simulation of active flexible

multibody systems—from now on referred to as active

mechanisms—are a multidisciplinary challenge. The

dynamic performance of such products is strongly depen-

dent on an optimal interaction between the controllers and

the mechanical components. An important tool in the

optimization of such products is modal analysis, which

predicts modal parameters, i.e. natural frequencies, mode

shapes and damping ratios, for the active system. Due to

the complexity of the mechanical components, both in

form and in function, it may be practical to handle such

systems through a finite element (FE) approach. Effective

time domain dynamic simulations of multibody systems in

an FE environment have been described by, for instance,

Géradin and Cardona [1] and Sivertsen [2].

The authors have recently developed a method for per-

forming modal analyses of active mechanisms in an FE

environment [3]. In that work, the equations for the control

system are expressed in second-order form, rather than in

first-order or state-space form, which is typical practice in

control system disciplines; see for instance [4–6]. One of

the advantages of this approach is an increased compati-

bility with the mechanical equations, which are typically

expressed in second-order form, e.g. [2, 7–10], since

equations determined in state-space form are difficult to

transform into second-order structural dynamics equations

[11]. The generalized eigenvalue problem will be of size n,

where n is the number of degrees of freedom (DOFs) and

traditional FE eigenvalue problem solvers can be utilized.
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One remark about that method is that the controller

properties have to be known explicitly prior to the modal

analysis. To the best of the authors’ knowledge, no com-

mercial software system for simulation of active mecha-

nisms fully integrates flexible multibody dynamics and

control system simulation, since the equations for control

systems are typically expressed in first-order form ð _x ¼
Axþ Bu; y ¼ Cxþ DuÞ while they are for mechani-

cal systems typically expressed in second-order form

ðM€rþ C _rþKr ¼ FÞ: Control system software, such as

MATLAB and Simulink,1 usually support both controller

design and control system simulation where the mechanical

system can be modeled with rigid bodies, lumped masses,

inertias, springs, dampers or analytical equations. This will

cause the flexible body dynamics to be predicted by very

simplified models. In flexible multibody dynamics software

systems, such as FEDEM,2 feedback type controllers will

typically calculate loads applied to the mechanism based

on feedback measurements of the system [2]. In addition,

some flexible multibody dynamics software systems also

have the option of importing or communicating with the

controller model as an external process, for instance,

through a dynamic link library (dll) or Simulink. For these

reasons, the controller is comparable to a ‘‘black box’’ or

unknown function, as seen from the mechanical part of the

software system. This approach works well in a time

domain analysis when the controller drives the mechanism

with applied loads based on the given controller algo-

rithms, however, a major problem occurs in modal analyses

of the closed-loop system. In free vibration analysis, all

loads are set to zero, which decouples the controller and

mechanical model. As a result, the mechanism becomes

singular in all controlled DOFs.

In order to overcome this issue, methods for identifying

the controller parameters may be applied. This paper is

focused on presenting a method for estimating controller

parameters for systems containing either higher-order

integral gains, higher-order derivative gains or a combi-

nation of proportional, integral and derivative gains, the

latter often being referred to as a proportional-integral-

derivative (PID) controller, the most common type of

controllers in use today [13, 14]. However, the method

presented in this work is not limited to apply to such

controllers only. It may also be applied to any system

containing properties corresponding to the ones listed

above. An example can be the identification of the

properties of a mechanical system equal to mass, damping

and stiffness based on, for instance, position, velocity or

acceleration parameters only. The objective of this work is

to derive a method which can be used when performing

modal analyses of active mechanisms, using FE based

software systems. The software systems used in this paper

are MATLAB and Simulink3 and FEDEM.4

2 Interaction between mechanism and controller

The equation of motion for a single degree of freedom

(SDOF) mechanical system with a single-input single-

output (SISO) feedback controller can be written as [3]:

m €rðtÞ þ c _rðtÞ þ k rðtÞ ¼ FAppðtÞ þ FCtrlðtÞ ð1Þ

where m is the mass, c is the damping and k is the stiffness.

r is the displacement of the mass m with respect to time; _r
and €r are the first and second time derivatives of r, i.e.

velocity and acceleration of the mass m. FApp is the applied

mechanical force and FCtrl is the force from the controller.

This is in accordance with equations found in [15].

Figure 1 shows a simple block diagram used for

describing a SISO feedback control system.

In Fig. 1, y0 is the reference variable, y is the measured

variable and e is the difference between y0 and y. u is the

controller output and FCtrl is a force from the controller

exerted by an actuator. x is the state variable from the

physical process (i.e. position r, velocity _r or acceleration

€r), and v is the disturbance on the physical process. Only

feedback controllers will be dealt with in this work, hence

all control system terminology used here refers implicitly

to feedback controllers.

For a feedback PID-type controller, the controller output

u is given by:

uPIDðtÞ ¼ Kp eðtÞ þ Ki

Z
eðtÞ dt þ Kd

d

dt
eðtÞ ð2Þ

where Kp is the proportional gain, Kd is the derivative gain

and Ki is the integral gain from the controller.

Since e is the difference between y0 and y, the controller

output can be split into a feedforward or feedthrough part

governed by y0 and a feedback part governed by y, as

shown in [16]. The feedforward part can be interpreted as

an applied force whose parameters are not affected by the

system itself and will not affect the internal dynamics of

the system. Therefore, it is not of particular interest in this

context. The only part which does affect the internal

dynamics of the system is the feedback part. Thus, Eq. (2)

can more conveniently be written as:

1 MATLAB and Simulink by The MathWorks, Inc.
2 FEDEM (Finite Element in Dynamics of Elastic Mechanisms)

simulation software is a multibody dynamics package distributed by

Fedem Technology AS. It is based on the finite element method and

uses model reduction techniques to effectively perform nonlinear time

domain dynamic simulations of active flexible multibody systems

[2, 12].

3 MATLAB and Simulink version R2010a.
4 FEDEM version R5.0.
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uPIDFeedback
ðtÞ ¼ Kp yðtÞ þ Ki

Z
yðtÞ dt þ Kd

d

dt
yðtÞ ð3Þ

One view of the control system is to isolate the control

elements from the physical process. The control elements

then principally contain three parts: a sensor, an actuator

and a controller that contains the various controller

elements, as shown in Fig. 2.

As shown in Fig. 2, the effects by the control elements

on the mechanical system can be given as:

oFCtrl

ox
¼ oFCtrl

ou

ou

oy

oy

ox
or dFCtrl ¼ GAct GCtrl GSens dx

ð4Þ

where GAct is the actuator gradient, GCtrl is the controller

gradient and GSens is the sensor gradient.

Similarly, the gradients for a multiple-input multiple-

output (MIMO) system can be written as:

dFCtrli
¼ oFCtrli

ouj

ouj

oyk

oyk

oxl
dxl ¼ GActij

GCtrljk GSenskl
dxl ð5Þ

or, in matrix form, as:

dFCtrl ¼
oFCtrl

ou

ou

oy

oy

ox
dx ¼ GAct GCtrl GSens dx ð6Þ

Hence, as explained in [3], the equation of motion for

the free vibration of a multiple degree of freedom (MDOF)

mechanical system with a MIMO feedback controller can

thus be written as:

M€rðtÞ þ C _rðtÞ þKrðtÞ þGActGCtrlGSens xðtÞ ¼ 0 ð7Þ

where M is the n� n mass matrix, C is the n� n damping

matrix, K is the n� n stiffness matrix and r; _r and €r are

the n� 1 position, velocity and acceleration vectors,

respectively. x is a vector of the system state variables, that

is, position, velocity and acceleration. GAct; GCtrl and GSens

are the actuator gradient, controller gradient and sensor

gradient matrices, respectively.

The actuator gradient GAct describes the relationship

between the controller forces FCtrl exerted by the actuator

and the output signals u from the controller, and has

dimensions nFCtrl
� nu where nFCtrl

is the number of con-

troller forces and nu is the number of controller outputs.

The controller gradient GCtrl describes the relationship

between the input variables y and output variables u both to

and from the controller, respectively; that is, the various

controller gains. Matrix GCtrl has the dimensions nu � ny

where nu is the number of controller outputs and ny is the

number of controller inputs. The sensor gradient GSens

describes the relationship between the controller input

variables y and the system state variables r; _r and €r rep-

resented by the vector x, and has dimensions ny � 3nr,

where ny is the number of controller inputs and nr is the

number of all system DOFs. x is given as:

x ¼
r
_r
€r

2
4
3
5 ð8Þ

Vector x has the dimensions 3nr � 1 where nr is the

number of all system DOFs. Each sensor is limited to

measure only one state variable in only one single system

DOF or between two system DOFs.

The matrix product G of the gradient matrices

GAct; GCtrl and GSens has dimensions nFCtrl
� 3nr: If G is

pre-multiplied with the topology matrix relating each

controller force FCtrli with its respective system DOFs, and

then split into 3 nr � nr matrices, GPos; GVel and GAcc; one

for each state variable r; _r and €r; the matrices

GPos; GVel and GAcc can be added to their respective sys-

tem matrix yielding the following equation system for the

free vibration of a controlled mechanism [3]:

MþGAccð Þ€rðtÞ þ CþGVelð Þ _rðtÞ þ KþGPosð ÞrðtÞ ¼ 0

ð9Þ

As shown in Eqs. (7) and (9), there is an uncoupling

between the mechanical system and the control elements,

hence, the properties of the mechanical system are not of

relevance when concerned with identifying the controller

parameters.

3 Estimation of controller parameters

One of the main motivations behind this paper is to be able

to perform accurate modal analyses of active mechanisms

using FE based software systems. To be able to do so, the

various controller gains, and hence the controller’s equiv-

alent mechanical properties, must be known. However,

Controller Physical Process0y e FCtrl

v

y

−
Actuator Sensor

u x

Fig. 1 Block diagram for a

SISO feedback control system

0 ( )y t

Sensor Actuator
( )u t ( )CtrlF t

Control elements

( )y t( )x t
Controller

Fig. 2 Control elements
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these values are not always explicitly available for the

person performing the modal analysis since mechanical

engineers and control engineers usually operate in different

software systems. Consequently, a method for estimating

the values of interest should be derived.

A potential method for parameter estimation is to

introduce perturbations into the system. This approach is

not to be confused with the perturbation method described

in [7], which can be used to solve nonlinear differential

equations in which the solution is in the form of a power

series. Perturbations in this context are incremental chan-

ges in a system variable. The basis of this technique can be

found in, for instance, the principle of virtual work [7, 10,

17], the displacement method/direct stiffness method [18],

system identification/parameter estimation [19, 20] and

optimization theory [21]. For all the various fields listed

above, the concept remains the same: apply changes in one

variable, measure reactions from other variables and then,

process the results to derive the desired system parameters.

In this paper, perturbations will be used on the decoupled

controller to estimate the desired controller parameters. The

controller is treated as a ‘‘black box’’ or an unknown func-

tion. By applying incremental changes, perturbations, to the

input of the controller, small changes in the output from the

controller can be registered. These changes will be in

accordance with the internal control routine of the controller.

The parameters of the controller can thus be estimated based

on predetermined changes in the controller input and regis-

tered changes from the controller output. One important

feature of the proposed technique is a save-and-restore

capability of the system variables. After perturbing, all sys-

tem variables are reset to their pre-perturbation state to not

affect any other simulations.

3.1 The perturbation technique

A perturbation, as described in the previous section, is

illustrated in Fig. 3.

In Fig. 3, the variables time t and controller input y are

perturbed by the values Myj and Mtj during perturbation j.

y0 and t0 are the initial values for y and t, respectively, at

the present time step. From Fig. 3, the following relation-

ships can be derived:

Myj ¼ yj � y0 ) yj ¼ y0 þ Myj ð10Þ

Mtj ¼ tj � t0 ) tj ¼ t0 þ Mtj ð11Þ

Since the controller output u is a function of y and t, the

following equation can be given:

Muj ¼ uj � u0

¼ ujðyj; tjÞ � uðy0; t0Þ
¼ ujðy0 þ Myj; t0 þ MtjÞ � uðy0; t0Þ

ð12Þ

The values Myj and Mtj can be chosen arbitrarily, but it

can be practical to express Myj as a function of Mtj: The

linear equation for yjðtÞ for perturbation j can then be

written as:

yjðtÞ ¼ y0 þ
Myj

Mtj
t ð13Þ

3.2 Estimation of controller parameters for controllers

containing proportional gain

For a feedback type controller containing only a controller

output u proportional to the input variable y, its feedback

gain equation can be written as:

uPðtÞ ¼ Kp yðtÞ ð14Þ

where Kp is the proportional gain. Equation (14) can be

written on a general differential form as:

du ¼ ou

oy
dy or du ¼ Kp dy ð15Þ

Since the perturbation technique is meant to be used

with computers, it is more suitable to treat Eq. (15)

numerically rather than analytically. In discrete differential

form, Eq. (15) can be written as:

Mu ¼ ou

oy
My or Mu ¼ KpMy ð16Þ

Kp can thus be calculated by solving the following

equation:

Kp ¼ Myð Þ�1
Mu ð17Þ

A perturbation algorithm for estimating Kp can be

broken into six steps. Since the controller parameters may

not be constant with time, the perturbation algorithm

should be performed each time an eigenvalue analysis is to

be performed. The steps in the perturbation algorithm are:

t

( )y t

0y

jy

jΔt

jΔy

0t jt

Fig. 3 Perturbation j of t and y
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1. Obtain the initial values y0 and u0 for the controller.

2. Establish Myj and Mtj. For simplicity, Myj can be given

as Myj ¼ Mtj;, making it sufficient to establish Mtj.

3. Calculate yj and tj in accordance with Eqs. (10) and (11).

4. Iterate the controller with these new values for the

input yj and time tj; and record the reaction from the

controller uj due to the change in the input.

5. Calculate Muj based on u0 and uj in accordance with

Eq. (12).

6. Use Eq. (17) to estimate Kp.

3.3 Estimation of controller parameters for controllers

containing integral gain

3.3.1 Single integration

For a feedback type controller containing only a controller

output u proportional to the time integral of the input

variable y, its feedback gain equation can be written as:

uIðtÞ ¼ Ki

Z
yðtÞ dt ð18Þ

where Ki is the integral gain. Equation (18) can be written

in discrete differential form as:

Mu ¼ ou

o
R

y dt
M

Z
y dt or Mu ¼ KiM

Z
y dt ð19Þ

and Ki can be calculated by solving the equation:

Ki ¼ M

Z
yj dt

� ��1

Muj ð20Þ

In order to estimate Ki using the perturbation technique

described in the previous sections, M
R

yj dt needs to be

discretized. In Fig. 3, M
R

yj dt is the area under the linear

curve. If yjðtÞ is given as in Eq. (13), M
R

yj dt can be made

as a function of Myj and Mtj by:

M

Z
yj dt ¼

ZMtj

0

yj dt ¼ y0t þ 1

2

Myj

Mtj
t2

� �
Mtj

0

¼ y0 þ
1

2
Myj

� �
Mtj ð21Þ

Inserting Eq. (21) into Eq. (20) yields:

Ki ¼ y0 þ
1

2
Myj

� �
Mtj

� ��1

Muj ð22Þ

3.3.2 Double integration

Like the single integration presented in Sect. 3.3.1, the

feedback gain equation for a feedback type controller con-

taining only a controller output u proportional to the double

time integral of the input variable y can be written as:

uIIðtÞ ¼ Kii

ZZ
yðtÞ dt dt ð23Þ

where Kii is the double integral gain. Equation (23) can be

written in discrete differential form as:

Mu¼ ou

o
RR

ydt dt
M

ZZ
ydt dt or Mu¼KiiM

ZZ
ydt dt ð24Þ

Based on antidifferentiation, the double integral

M

RR
yj dt dt can be derived in discrete form as:

M

ZZ
yj dt dt ¼

ZMtj

0

Z t

0

yj dt dt ¼ 1

2
y0 t2 þ 1

6

Myj

Mtj
t3

� �
Mtj

0

¼ 1

2
y0 þ

1

6
Myj

� �
Mt2

j ð25Þ

Kii can thus be estimated by solving:

Kii ¼
1

2
y0 þ

1

6
Myj

� �
Mt2

j

� ��1

Muj ð26Þ

3.3.3 Triple integration

Like the single and double integral presented in the previous

sections, the feedback gain equation for a feedback type

controller containing only a controller output u proportional to

the triple time integral of the input variable y can be written as:

uIIIðtÞ ¼ Kiii

ZZZ
yðtÞ dt dt dt ð27Þ

where Kiii is the triple integral gain. Following the same

procedure as for the double integral in the previous section, the

triple integral M
RRR

yj dt dt dt can be derived in discrete form

as:

M

ZZZ
yj dt dt dt ¼

ZMtj

0

Z t

0

Z t

0

yj dt dt dt

¼ 1

6
y0 t3 þ 1

24

Myj

Mtj
t4

� �
Mtj

0

¼ 1

6
y0 þ

1

24
Myj

� �
Mt3

j ð28Þ

and Kiii can be estimated by solving:

Kiii ¼
1

6
y0 þ

1

24
Myj

� �
Mt3

j

� ��1

Muj ð29Þ

3.4 Estimation of controller parameters for controllers

containing derivative gain

3.4.1 Single derivation

For a feedback type controller containing only a controller

output u proportional to the time derivative of the input

variable y, its feedback gain equation can be written as:
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uDðtÞ ¼ Kd

d

dt
yðtÞ ¼ Kd _yðtÞ ð30Þ

where Kd is the derivative gain. Equation (30) can be

written in discrete differential form as:

Mu ¼ ou

o _y
M _y or Mu ¼ Kd M _y ð31Þ

Kd can be calculated by solving the equation:

Kd ¼ M _yj

� ��1
Muj ð32Þ

In order to estimate Kd using the perturbation technique

described in the previous sections, M _yj has to be

discretized. The derivative in Fig. 3 can be given as:

_yj ¼
Myj

Mtj
ð33Þ

Using Eq. (10) as a basis, M _yj can be given as:

M _yj ¼ _yj � _y0 ¼
Myj

Mtj
� My0

Mt0
ð34Þ

However, _y0 does not exist in Fig. 3. In order to have

both M _yj and M _y0, two perturbation steps have to be

performed. An example of a two-step perturbation is

illustrated in Fig. 4.

As for the one-step perturbation illustrated in Fig. 3, the

values My0; Myj; Mt0 and Mtj can be chosen arbitrarily, but

it can be practical to express Myj as a function of Mtj; while

Mt0 can be given as Mt0 ¼ Mtj and My0 ¼ 0. Equation (34)

can then be simplified to:

M _yj ¼ _yj � 0 ¼ Myj

Mtj
ð35Þ

Inserting Eq. (35) into Eq. (32) yields:

Kd ¼
Myj

Mtj

� ��1

Muj ð36Þ

3.4.2 Double derivation

For a feedback type controller containing only a controller

output u proportional to the double time derivative of the

input variable y, its feedback gain equation can be written

as:

uDDðtÞ ¼ Kdd

d2

dt2
yðtÞ ¼ Kdd €yðtÞ ð37Þ

where Kdd is the double derivative gain. Equation (37) can

be written in discrete differential form as:

Mu ¼ ou

o€y
M€y or Mu ¼ Kdd M€y ð38Þ

Similarly to the discretization of M _yj in Sect. 3.4.1, M€yj

can be written as:

M€yj ¼ €yj � €y0 ¼
M _yj

Mtj
� M _y0

Mt0
ð39Þ

In order to derive M€y; three perturbation steps have to be

performed. An example of a three-step perturbation is

given in Fig. 5.

In Fig. 5, Myj0 is the first perturbation step, Myj1 is the

second perturbation step and Myj2 is the third perturbation

step in perturbation j. In the figure, the following param-

eters are given: Mtj0 ¼ Mtj1 ¼ Mtj2 ¼ Mtj; Myj0 ¼
0; Myj1 ¼ Mtj and Myj2 ¼ �Myj1: Using this three-step

perturbation series with the parameters as shown in Fig. 5,

the variables Myj; M _yj and M€yj can be given as:

Myj ¼ Myj2 ð40Þ

M _yj ¼ M _yj2 ¼
Myj2 � Myj1

Mtj
ð41Þ

M€yj ¼
M _yj2 � M _yj1

Mtj
¼
Myj2�Myj1

Mtj
� Myj1�Myj0

Mtj

Mtj

¼ Myj2 � 2Myj1 þ Myj0

Mt2
j

ð42Þ

t

( )y t

0y

jy

j

jΔy

Δy

Δt Δt
0t jt0

1t−

1y−

0

Fig. 4 Two-step perturbation

t

( )y t

0j 1j 2j

0jΔy

Δt Δt Δt

Δy Δy1j 2j

2jy

1jy

Fig. 5 Three-step perturbation
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Since Myj0 ¼ 0; Eq. (42) can be reduced to:

M€yj ¼
Myj2 � 2Myj1

Mt2
j

ð43Þ

Kdd can thus be calculated by solving:

Kdd ¼
Myj2 � 2Myj1

Mt2
j

 !�1

Muj ð44Þ

3.5 Estimation of controller parameters for controllers

containing combinations of proportional, integral

and derivative gains

For a PID controller, the feedback controller output is

given by Eq. (3). In a discrete differential form, this can be

written as:

Mu ¼ ou

oy
Myþ ou

o
R

y dt
M

Z
y dt þ ou

o _y
M _y or Mu

¼ Kp Myþ KiM

Z
y dt þ Kd M _y ð45Þ

As demonstrated in Eq. (45), a PID controller is a

compound controller consisting of both a proportional gain,

an integral gain and a derivative gain. In order to estimate

all three gains Kp, Ki and Kd using the perturbation

technique, three perturbations need to be performed. And

since the controller contains a derivative gain, a two-step

perturbation algorithm needs to be used, as explained in

Sect. 3.4.1. This gives the following set of equations:

Mu1 ¼ Kp My1 þ KiM

Z
y1 dt þ KdM _y1

Mu2 ¼ Kp My2 þ KiM

Z
y2 dt þ KdM _y2

Mu3 ¼ Kp My3 þ KiM

Z
y3 dt þ KdM _y3

ð46Þ

which can be written in matrix form as:

Mu1

Mu2

Mu3

2
4

3
5 ¼

My1 M

R
y1 dt M _y1

My2 M

R
y2 dt M _y2

My3 M

R
y3 dt M _y3

2
4

3
5 Kp

Ki

Kd

2
4

3
5 ð47Þ

To derive the controller properties Kp, Ki and Kd, one

can solve the following matrix system by the use of matrix

inversion:

Kp

Ki

Kd

2
4

3
5 ¼

My1 M

R
y1 dt M _y1

My2 M

R
y2 dt M _y2

My3 M

R
y3 dt M _y3

2
4

3
5
�1
Mu1

Mu2

Mu3

2
4

3
5 ð48Þ

Inserting Eqs. (21) and (35) into Eq. (48) yields:

Kp

Ki

Kd

2
4

3
5 ¼

My1 y0 þ 1
2
My1

� �
Mt1

My1

Mt1

My2 y0 þ 1
2
My2

� �
Mt2

My2

Mt2

My3 y0 þ 1
2
My3

� �
Mt3

My3

Mt3

2
64

3
75
�1

Mu1

Mu2

Mu3

2
4

3
5 ð49Þ

To avoid singularities when performing the matrix

inversion in Eq. (49), the determinant of the invertible

matrix should be nonzero. This requirement is met for

My1 6¼ My2 6¼ My3 and Mt1 6¼ Mt2 6¼ Mt3. Typically, Mtj

and Myj can be given as:

Mt1 ¼ d � Mtsim; My1 ¼ Mt1; Mtj ¼ j � Mt1;
Myj ¼ j � My1

ð50Þ

where Mtsim is the simulation time increment. d is a small

positive scalar called the relative perturbation step size

[21]. A possible default value of d; as used by the authors

in this work, is 0.1.

A perturbation algorithm for estimating Kp, Ki and Kd

can be broken down into eight steps. Since the controller

parameters may not be constant with time, as mentioned in

Sect. 3.2, the perturbation algorithm should be performed

each time an eigenvalue analysis is to be performed. The

steps in the perturbation algorithm are:

1. Do one initial perturbation on the controller with My ¼
0 and Mt 6¼ 0: This is to ensure _y0 ¼ 0:

2. Obtain the initial values y0 and u0 for the controller.

3. Establish Myj and Mtj. For a PID controller, j ¼ 1. . .3;

but if Eq. (50) is used, it is sufficient to establish Mt1:

4. Calculate M
R

yj dt and M _yj. These are given by Eqs.

(21) and (35).

5. Calculate yj and tj in accordance with Eqs. (10) and

(11).

6. Iterate the controller with these new values for the

input yj and time tj; and record the reaction from the

controller uj due to the change in the input.

7. Calculate Muj based on u0 and uj in accordance with

Eq. (12).

8. Use the matrix system in Eq. (49) to estimate Kp, Ki

and Kd.

3.6 Partitioning of perturbation steps

When testing the perturbation technique presented in Sects.

3.1–3.5, the authors experienced a problem with some

controller simulation algorithms. In some cases, the con-

trollers were suffering from what seemed as an erroneous

time step dependent delay from when a change in the input

resulted in a change in the outputs. In order to extract the

gradients from such a system, it may be necessary to per-

form a perturbation using multiple time steps, that is,

introducing incremental steps in between each perturba-

tion. Such a multistep perturbation is illustrated in Fig. 6.

As illustrated in Fig. 6, if the perturbation is divided into

n equal sections, each perturbation step Mtj and Myj would

be composed of n incremental sub-steps Mtji and Myji ,

where i ¼ 1. . .n. Note that the subscripts in this section are
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not to be confused with the subscripting presented in Sect.

3.4.2. For each tji and yji ; the system would be iterated. For

the perturbation technique itself, only tjn and yjn would be

used. The incremental sub-steps would then be of size:

Mtji ¼
1

n
Mtj ð51Þ

4 Testing of the perturbation technique

In order to verify the theory and methods derived in

Chapter 3, some numerical tests were performed on three

different controllers. The first controller was one contain-

ing a higher-order integral gain. The second controller

contained a higher-order derivative gain, while the last

controller was a compound controller containing combi-

nations of proportional, integral and derivative gains

(PID-type controller). For the first two cases, the objective

was to test the derived theory by comparing it against a

commercial software system, represented here by Simu-

link. Since the perturbation technique is meant to be

implemented in FEDEM, which is a FE bases software

system, the final case was focused on the accuracy of

parameter estimation for variants of PID controllers.

4.1 Testing of the perturbation technique for parameter

estimation of controllers containing integral gain

A comparison was made between the perturbation

technique and Simulink for a system containing single,

double and triple integration. For the perturbation tech-

nique, Eqs. (21), (25) and (28) were used to calculate

M

R
y dt; M

RR
y dt dt and M

RRR
y dt dt dt; respectively. In

Simulink, this system was created using three integration

blocks in series, as shown in Fig. 7.

For the triple integration system, the parameters Mtj; Myj

and y0 were given as Mt1 ¼ 0:1 s,My1 ¼ Mt1 and y0 ¼ 0. In

Simulink, the ode4 (Runge–Kutta) solver was used. The

simulation start time was set to 0.0 and the simulation stop

time to 0.1, with a fixed-step size of 0.1. A comparison

between the perturbation technique and the simulation

results from Simulink is shown in Table 1.

As can be seen in Table 1, the perturbation technique

and the Simulink simulation are identical for M
R

y1 dt;

M

RR
y1 dt dt and M

RRR
y1 dt dt dt.

4.2 Testing of the perturbation technique for parameter

estimation of controllers containing derivative gain

A comparison was made between the perturbation tech-

nique and Simulink for a system containing single and

double derivation. For the perturbation technique, Eqs. (41)

and (42) were used for M _y and M€y; respectively. In Simu-

link, this system was created using two derivation blocks in

series, as shown in Fig. 8.

For the double derivation system, the parameters of

interest used in the simulations were Mtj0 ¼ Mtj1 ¼ Mtj2 ¼
Mtj; Myj0 ¼ 0; Myj1 ¼ Mtj and Myj2 ¼ �Myj1, with the

value for Mtj given as Mt1 ¼ 0:1 s: In Simulink, the ode4

(Runge–Kutta) solver was used. The simulation start time

was set to 0.0 and the simulation stop time to 0.2, with a

fixed-step size of 0.1. A comparison between the pertur-

bation technique and the simulation results from Simulink

is shown in Table 2.

As can be seen in Table 2, the perturbation technique and

the Simulink simulation are identical for both M _y1 and M€y1:

4.3 Testing of the perturbation technique for parameter

estimation of PID controllers

To verify the theory and method derived in Sect. 3.5, some

basic tests were performed using the perturbation tech-

nique. The objective of the tests was to verify whether the

t

( )y t

0y

jy

j

jΔy

0t jt

1 1
,j jt y

2 2
,j jt y

3 3
,j jt y

0 0
,j jt y 2j

Δt

Δt

Δy
2j

Fig. 6 Partition of perturbation

Fig. 7 System of triple integration modeled in Simulink using the

Continuous Integrator block

Table 1 Comparison of the perturbation technique against results

from the simulation in Simulink for a system with triple integration

Perturbation Simulink

Mt1 0.1 0.1

My1 0.1 0.1

M

R
y1 dt 0.005 0.005

M

RR
y1 dt dt 1:6667� 10�4 1:6667� 10�4

M

RRR
y1 dt dt dt 4:1667� 10�6 4:1667� 10�6
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perturbation technique could be used to estimate the con-

troller parameters for any PID-type controller during any

time step of a nonlinear dynamic time domain simulation.

Since the perturbation technique is intended to be imple-

mented in FEDEM, it is vital to test and verify the method

in this software system. In addition, one initial test of the

perturbation technique for PID controllers was performed

in Simulink. One possible setup for a PID controller in

Simulink is shown in Fig. 9.

For the PID system in Simulink, the following controller

parameters were used: Kp = 1, Ki = 1 and Kd = 1. These

are the values which are to be treated as the unknown

parameters of the PID controller; although to verify the

perturbation technique, the values in this example are known

a priori. For the perturbation of the PID controller based on

Fig. 4, the following parameters were used: Mtj; Myj; Mt0;

My0; t0 and y0 were given as Mt1 ¼ 0:1 s,Mtj ¼ j � Mt1;

Myj ¼ Mtj; Mt0 ¼ Mt1 and My0 ¼ t0 ¼ y0 ¼ 0. The ode4

(Runge–Kutta) solver was used, and the simulation start time

was set to 0.0. Three perturbations were performed

(j = 1…3), and for each perturbation j, the fixed-step size

was set toMtj and the simulation stop time to 2 � Mtj. Based on

Eq. (49), the results from the simulation in Simulink are

shown in Eq. (52).

Kp

Ki

Kd

2
64

3
75 ¼

0:1000 0:0050 1:0000

0:2000 0:0200 1:0000

0:3000 0:0450 1:0000

2
64

3
75
�1

1:1050

1:2200

1:3450

2
64

3
75

¼
1:0000

1:0000

1:0000

2
64

3
75 ð52Þ

As revealed in Eq. (52), Kp = 1, Ki = 1 and Kd = 1.

These estimated values for Kp, Ki and Kd are identical to

the actual values for the controller gains of the PID

controller, indicating a validity of the perturbation

technique for such controllers.

Since the initial simulation results from Simulink indi-

cate that the perturbation technique is valid for PID con-

trollers, three additional tests were performed using the

perturbation technique in FEDEM. As previously men-

tioned, the objective of these tests was to establish whether

the perturbation technique could be used to estimate the

controller parameters for any PID-type controller during

any time step of a nonlinear dynamic time domain simu-

lation. The setup for the tests is shown in Fig. 10.

The setup in Fig. 10 consists of a SDOF system with

mass m, damping c and stiffness k. There is only one DOF:

position r of the mass. r is the input for the controller,

which is of type PID. As stated in Sect. 2, the properties of

the mechanical system are not of relevance when con-

cerned with identifying the controller parameters, hence,

neither the parameters value nor the number of DOFs of the

mass-spring-damper system are of relevance in this con-

text. The numerical values for the controller gains were

arbitrarily chosen, but were deliberately given different

values to more easily distinguish between them. The values

for Mtj and Myj were given by Eq. (50), with d ¼ 0:1: The

simulation time increment Mtsim for all tests in this section

was set to 0.01 s, i.e. Mt1 ¼ 0:001:

Three different tests were performed on the active mass-

spring-damper system shown in Fig. 10. The first test was

to insure that the perturbation technique worked for con-

trollers of any possible combination of P, I and D. The next

test was to insure that the perturbation technique worked at

any time step of the dynamic time domain simulation and

not only at the start-up of the simulation. The last test was

to insure that the perturbation technique would also work

for discontinuous systems.

4.3.1 Various controller combinations of P, I and D

The perturbation technique should be able to yield correct

estimations of the controller parameters for any PID-type

controller for the possible combinations of P, I and D,

including the trivial system without any controller present.

To verify this, the active system in Fig. 10 was set in static

Fig. 8 System of double derivation modeled in Simulink using the

Continuous Derivative block

Table 2 Comparison of the perturbation technique against results

from the simulation in Simulink for a system with double derivation

Perturbation Simulink

Mt1 0.1 0.1

My1 -0.1 -0.1

M _y1 -2 -2.0

M€y1 -30 -30.0

Fig. 9 PID controller modeled in Simulink
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equilibrium, and the perturbation technique was performed

on a total of eight different types of PID controllers: PID, PI,

PD, ID, P, I, D and zero-gain controller. The basic values

for the different gains were set to Kp ¼ 100; Ki ¼ 20 and

Kd ¼ 6; in addition to zero when not included. The results

from the different perturbations are shown in Table 3. The

numerical values of the estimations are given here with 12

decimals. With regard to the intended usage of the pertur-

bation technique, correct values up to the second decimal

should be more than sufficient, but to depict the accuracy of

the method and show when the estimated values deviate

from the correct ones, 12 decimals were used.

The results presented in Table 3 demonstrate that the

perturbation technique yields approximately correct con-

troller parameter estimations for any PID-type controller.

All but the PI and PID controller yield correct values up to

the 12th decimal. For the PI and PID controller, the integral

gain Ki is only correct up to the 9th decimal, and the

proportional gain Kp for the PID controller is incorrect on

the 12th decimal.

4.3.2 Perturbations on PID controller during time

simulation with sinusoidal input signal

The perturbation technique should be able to yield correct

estimations of the controller parameters for any value of the

initial values y0 and u0 for the controller, i.e. yield correct

estimations of the controller parameters at any time step of

the dynamic time domain simulation. To verify this, the

position r of the mass m in the active system in Fig. 10 was

given a prescribed sinusoidal motion of 1 Hz, and the per-

turbation technique was performed on a PID controller at

various time steps. The simulation ran for one second with a

time increment of 0.01 s. The perturbation technique was

performed both at start-up and at time intervals of 0.1 s,

giving a total of 11 different perturbations. The gains to the

PID controller were set to Kp ¼ 100; Ki ¼ 20 and Kd ¼ 6.

The input signal to the controller is shown in Fig. 11. The

results from the simulation are shown in Table 4.

As can be seen in Table 4, the perturbation technique

yields correct results up to the 8th decimal at any time step

for any of the controller parameters for this simulation.

Both the Kp and Ki estimations are accurate up to about the

8th decimal, while the Kd estimations are accurate up to the

13th decimal. For the proportional gain, Kp, the perturba-

tion technique yields the greatest errors at time 0.2 and

0.7 s, both being approximately 2:0� 10�8: For the inte-

gral gain, Ki, the perturbation technique yields the greatest

errors at time 0.1, 0.2 and 0.7 s, the difference being

approximately 2:5� 10�8 for 0.1 s and approximately

�2:0� 10�8 for 0.2 and 0.7 s, respectively. For the

derivative gain, Kd, the perturbation technique yields the

greatest errors at time 0.1 and 0.2 s, being about 5� 10�14

and �4� 10�14; respectively.

e
mr cr kr+ +

0y FCtrl

v

y

−

Actuator Sensor
u

pK

iK dt∫

d

d
K

dt

r

m

k

c

r

CtrlF

Fig. 10 SDOF Mass-spring-

damper system with position

feedback PID controller

Table 3 Estimated controller parameters for different combinations

of P, I and D controllers

Kp Ki Kd

PID 100.000000000005 19.999999999069 6.000000000000

PI 100.000000000000 19.999999999884 0.000000000000

PD 100.000000000000 0.000000000000 6.000000000000

ID 0.000000000000 20.000000000000 6.000000000000

P 100.000000000000 0.000000000000 0.000000000000

I 0.000000000000 20.000000000000 0.000000000000

D 0.000000000000 0.000000000000 6.000000000000

None 0.000000000000 0.000000000000 0.000000000000

Fig. 11 Input signal to the controller. The crosses mark each time the

perturbation sequence is performed
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4.3.3 Perturbations on PID controller during time

simulation with discontinuous sinusoidal input signal

To further test the capabilities of the perturbation technique

to yield correct estimations of the controller parameters for

any value of the initial values y0 and u0 for the controller,

the system described in Sect. 4.3.2 was used with a dis-

continuous input signal. The sinusoidal signal was given a

switch-to-zero-value at ±0.7, meaning it would go to zero

whenever the absolute value of the input signal became

larger than 0.7. As shown in Fig. 12, this should occur at

time 0.2, 0.3, 0.7 and 0.8 s. All other parameters were the

same as they were in Sect. 4.3.2. The results from the

simulation are shown in Table 5.

As can be seen in Table 5, the perturbation technique

yields correct results up to the 6th decimal at any time step

for any of the controller parameters for this simulation.

Both the Kp and Ki estimations are accurate up to about the

6th decimal, while the Kd estimations are accurate up to the

12th decimal. For the Kp estimation, the greatest error is

encountered at 0.3 s, being approximately �8� 10�7. For

the Ki estimation, the greatest error is encountered at 0.5 s,

being approximately 2� 10�6. For the Kd estimation, the

greatest errors are encountered at 0.2, 0.4 and 0.5 s, all

being approximately 2:5� 10�12.

5 Discussion

The main motivation behind this work is to make engi-

neers working in an FE environment able to perform

accurate modal analyses of active mechanisms. Today,

FEDEM has the capability of performing accurate time

domain simulations using the controllers to drive the FE

model with applied loads based on the given controller

algorithms. These controller algorithms can be created

either in FEDEM’s Control Editor or in an external

software system, such as for instance Simulink. Therefore,

the controller algorithms are not required to be known for

the engineer working in the FE environment. As stated

in the introduction, a major obstacle for modal analysis of

the closed-loop system is that in free vibration analysis all

loads are set to zero, thereby resulting in a decoupling of

the controller and mechanical model. By identifying the

controller parameters, the controller’s mechanically

equivalent properties can be added to the FE model for

the modal analyses, thus, including both controller and

Table 4 Estimated controller parameters at different time steps for

sinusoidal input signal

Time Kp Ki Kd

0.0 100.000000000005 19.9999999990687 6.00000000000000

0.1 99.999999986962 20.0000000223517 6.00000000000005

0.2 100.000000018626 19.9999999795109 5.99999999999996

0.3 99.999999991618 20.0000000083819 6.00000000000003

0.4 99.999999997206 20.0000000037253 6.00000000000003

0.5 100.000000000000 20.0000000018626 6.00000000000000

0.6 99.999999994412 19.9999999916181 5.99999999999999

0.7 100.000000019558 20.0000000204891 6.00000000000003

0.8 99.999999994412 19.9999999944121 6.00000000000002

0.9 100.000000000000 20.0000000009313 5.99999999999999

1.0 100.000000000005 19.9999999990687 6.00000000000000

Fig. 12 Input signals to the controller. The crosses mark each time

the perturbation sequence is performed. The input signal is a

discontinuous sinusoidal signal with switch-to-zero-value at ±0.7

Table 5 Estimated controller parameters at different time steps for

discontinuous sinusoidal input signal

Time Kp Ki Kd

0.0 100.00000000000400 19.99999999813740 6.00000000000000

0.1 100.00000011222400 19.99999981001020 6.00000000000060

0.2 -0.00000000044409 0.00000000000000 0.00000000000222

0.3 -0.00000082446987 0.00000086508578 0.00000000000040

0.4 99.99999936856320 20.00000107102100 6.00000000000230

0.5 99.99999999535250 20.00000215135510 6.00000000000253

0.6 99.99999972432850 19.99999952781950 5.99999999999841

0.7 -0.00000004406638 -0.00000004640732 -0.00000000000005

0.8 -0.00000004406638 -0.00000004640732 -0.00000000000005

0.9 100.00000010058300 20.00000017136340 5.99999999999991

1.0 100.00000000017100 19.99999991711230 5.99999999999981
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mechanical properties and hence, improving the accuracy

of the modal analysis. The method derived in this work is

intended to be implemented in FEDEM, though as pre-

sented here, it is not dependent on any particular software

system.

The results presented in Sects. 4.1 and 4.2 show that the

perturbation technique yields correct estimations for sys-

tems containing single, double and triple integration, as

well as single and double derivation compared to results

derived using Simulink. This indicates validity of the

perturbation technique for such systems. Controllers con-

taining either triple integration or double derivation are not

a very common type of controllers; however, in this work

they do serve the purpose of testing the robustness of the

perturbation technique, which only strengthens the validity

of the derived method for its intended use.

The validity of the perturbation technique for PID

controllers was briefly tested in Simulink. The results from

that initial test demonstrated that the perturbation technique

is able to correctly estimate such controllers in Simulink.

More thorough tests of the technique were conducted in

FEDEM, and as can be seen from the results presented in

Sect. 4.3, the perturbation technique yields estimations for

controller parameters with a highly satisfactory accuracy

for any PID-type controller during any time step of a

nonlinear dynamic time domain simulation in FEDEM.

The greatest estimation error in any of the tests still yielded

correct resulting up to the sixth decimal. This should be

more than sufficient since a requirement for satisfactory

accuracy should be correct results up to the second decimal

with regard to the intended usage of the perturbation

technique. Hence, for PID-type controllers, the derived

method should be able to provide accurate estimations of

the controller parameters.

Still, one note about the perturbation technique should

be made. There has to be a correlation between the state

variables of the perturbed system and those used in the

perturbation technique. For instance, it can be tempting to

believe that the perturbation technique is able to accu-

rately predict the effective mass, stiffness and damping

values for an active system containing a position feedback

PID controller by perturbing the active system and

deriving the system parameters only with respect to mass,

stiffness and damping, and not including the integral gain

from the controller. By ignoring some of the state vari-

ables of the perturbed system, critical and vital system

information can either be lost or estimated to incorrect

values, rendering the technique virtually useless for its

intended use. However, when used properly, the technique

has the potential of being of great assistance in identify-

ing the unknown parameters of a controller, such as when

performing modal analysis of active mechanisms in an FE

environment.

6 Conclusion

In this paper, a method for controller parameter estimation

by the use of perturbations has been presented. The theory

for perturbation of systems containing single, double or

triple integral functions, single or double derivative func-

tions or a combination of proportional, integral and

derivative functions has been derived and tested using

commercial software systems. The results from the tests

reveal that the derived theory works well for all the men-

tioned controller variants.

If used properly, the presented technique, with its

capabilities of accurate controller parameter estimation,

has the potential of being a powerful tool for engineers who

are conducting modal analysis of active flexible multibody

systems in a finite element environment.
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